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Abstract
Based on the notion of Darboux–KP chain hierarchy and its invariant
submanifolds we construct some class of constraints compatible with integrable
lattices. Some simple examples are given.

PACS number: 02.30.Ik

1. Introduction

Our concern in this paper is about differential-difference systems (lattices) over a finite number
of fields (unknown functions of discrete variable i) which share the property of having an
infinite number of conservation laws. In a sense one can interpret these conservation laws as
an analog of first integrals for finite-dimensional dynamical systems. It is supposed that each
conservation law corresponds to the flow on a suitable infinite-dimensional phase space and
these flows are pair-wise commuting. Differential-difference systems of this type are referred
to as ‘integrable’. For the integrable lattice under consideration corresponding flows governed
by some evolutionary equations can be interpreted as generalized symmetries. One says that
the given system with these properties admits an integrable hierarchy (see, for example, [10]).

A number of differential-difference systems with the above-mentioned properties which
have applications in different areas of natural sciences are known from the literature. Perhaps
the simplest and on the other hand the interesting example of an integrable lattice is the
well-known Volterra [22] (or Kac–van Moerbeke) equation [5].

a′
i = ai(ai−1 − ai+1). (1)

It can be considered as a single equation on the function a = a(i, x) = ai of discrete variable
i ∈ Z and continuous variable x ≡ t1 ∈ R and is known to be the integrable discretization of
the Korteweg–de Vries equation [5]. Due to numerous applications of the Volterra lattice (see,
for example, [4, 8, 21]), it can be accepted nowadays as a classical equation of mathematical
physics. This equation is known to be integrable by the inverse scattering transform method
due to [8].
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The Volterra lattice hierarchy can be written as an infinite number of evolutionary
equations of the form

∂sai = ai(ζs(i + 1) − ζs(i − 1)), where ∂s ≡ ∂

∂ts
. (2)

It turns out that polynomial discrete functions ζk = ζk[a] here are conservation densities for
all the flows. One can write the differential-difference conservation laws for (2) as

Dts ζk(i) = Js,k(i + 1) − Js,k(i).

The discrete functions ζk can be calculated by making use of the recursion relation

�ζk+1 = Lζk, with ζ1 = −a

which can be derived from the Lax representation of the Volterra lattice hierarchy (see, for
example, [19]). This relation is defined by a pair of discrete operators: forward difference
operator � ≡ � − 1 and L ≡ (a� + a) ◦ �−1 − � ◦ (a� + a) with � being a shift operator
acting on an arbitrary function of discrete variable as (�f )(i) = f (i + 1).

Formally, one can construct first integrals of (2) as ζk = ∑
i∈Z ζk(i) but, generally

speaking, it makes no sense because of the convergence problem. Provided that the periodicity
condition ai+N = ai is imposed which is evidently compatible (since the right-hand side of
(2) does not depend explicitly on i) with all flows (2) one is forced to consider the finite-
dimensional dynamical system

u′
k = uk(uk−1 − uk+1) where k ∈ Z/NZ.

It is known to be the Liouville-integrable Hamiltonian system.
One knows many examples of reductions for the Volterra lattice defined by some algebraic

constraints [4]. As in the case of periodic condition, these constraints lead to Liouville-
integrable or Painlevé-type systems. In this paper, as a particular result, we present an infinite
number of conditions compatible with the Volterra lattice hierarchy which can be written as
the ordinary autonomous Nth-order difference equation

ai+N = R(ai, . . . , ai+N−1) (3)

with the right-hand side R being some rational function of its arguments. As a result, we are
led to the system of ordinary differential equations

u′
1 = u1(S(u1, . . . , uN) − u2)

u′
k = uk(uk−1 − uk+1), k = 2, . . . , N − 1 (4)

u′
N = uN(uN−1 − R(u1, . . . , uN))

on u1 = ai, . . . , uN = ai+N−1 with some initial value i = i0. The function S here is defined
by the inversion formula ai−1 = S(ai, . . . , ai+N−1). Shifting i → i + 1 yields the discrete
symmetry transformation

ūk = uk+1, k = 1, . . . , N − 1, ūN = R(u1, . . . , uN)

for (4). It should be noted that some class of reductions generated by a kind of relations (3)
was previously presented in [16] and all the examples given there can be derived as particular
cases of reductions in this paper.

It is our main goal in this paper to present a unified geometric approach to constructing
some class of restrictions compatible with integrable lattices and its hierarchies. We consider
a community of integrable lattices which are supposed to be derived as a result of suitable
reduction of the so-called Darboux–KP (DKP) chain hierarchy which, in fact, is a chain of KP
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hierarchy solutions related to each other by the Darboux map [7]. From the geometric point
of view it is convenient to present the DKP chain in the form of differential and differential-
difference conservation laws. One writes its equations in terms of infinite collections {hk, ak}
of functions of evolution parameters ts and the discrete variable i. It is relevant in this approach
to consider these unknown functions as coefficients of some formal Laurent series.

The DKP chain hierarchy admits an infinite number of invariant submanifolds Sn
l−1 and

the Volterra equation and many other integrable lattices arise as a result of restriction on the
DKP chain on the submanifold constructed as an intersection Sn

0 ∩ Sp

l−1 with some n, p and
l. In particular S1

0 ∩ S2
0 corresponds to the Volterra lattice. It is important that all integrable

lattices under consideration in this paper may be written in terms of universal coordinates
{ak = ak(i) : k � 1} parameterizing the points of some infinite-dimensional phase space M.
Restricting the DKP chain only to Sn

0 yields a hierarchy which is more convenient to write in
terms of an infinite number of functions {ak}. This hierarchy we call the nth discrete KP, since
in the case n = 1 one has equations of ordinary discrete KP hierarchy. Integrable lattices over
a finite number of fields can be considered as a result of restriction of M on some submanifold
Mn,p,l with the help of algebraic equations

Ik[a1, a2, . . .] = 0, with k � 1

where Ik are some suitable polynomial discrete functions on M.
To make the matter more clear, let us illustrate our general result stated below in theorem 3

by discussing a simple example. Consider the one-field lattice

a′
i + a′

i+1 = (ai + ai+1)(ai−1 − ai+2)

which corresponds to S1
0 ∩ S3

0 and requires that a also be a solution to the Volterra equation.
It is equivalent to the condition

aiai+2 = ai+1ai+3 (5)

which, as can be checked by direct calculations, is compatible with the Voltera lattice. At the
first sight it seems that the Volterra equation supplemented by constraint (5) corresponds to
the triple intersection S1

0 ∩ S2
0 ∩ S3

0 , but one can check that it gives only its trivial solution
a = 0. The point is that there exist invariant conditions weaker than those defining M1,3,1.
It turns out that these conditions are written in the form of periodicity relations with some
discrete polynomial functions. The submanifold defined by these ‘weak’ conditions we denote
as N1,3,1 and the Volterra equation supplemented by (5) appears as a result of restriction of
discrete KP hierarchy on M1,2,1 ∩ N1,3,1.

This paper is organized as follows: in section 2, we provide the reader with some basic
facts about the DKP chain hierarchy following the lines suggested in [7]. In section 3, we
formulate the theorem which provides us with an infinite number of invariant submanifolds for
the DKP chain hierarchy. This result is the basis to establish a relationship of many integrable
lattices with the KP hierarchy. We provide the reader with some examples of integrable
differential-difference systems over a finite number of fields. In section 4 we formulate our
main result which allows us to construct a broad class of constraints compatible with integrable
lattices and show, in section 5, how this result can be applied on the example of extended
Volterra equation [9]

a′
i = ai

⎛
⎝ n∑

j=1

ai−j −
n∑

s=1

ai+j

⎞
⎠ (6)

also known as Bogoyavlenskii lattices [3].
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2. The DKP chain hierarchy

Let us first give some basics on the DKP chain [7]. This can be defined by two relations

∂sh(i) = ∂H(s)(i), (7)

∂sa(i) = a(i)(H (s)(i + 1) − H(s)(i)) (8)

the first of which yields evolution equations of the KP hierarchy in the form of local
conservation laws with h = z +

∑
k�2 hkz

−k+1 being a generating function for conserved
densities of the KP hierarchy. The formal Laurent series

H(s) = zs +
∑
k�1

Hs
k z−k,

attached to any integer s � 2 is the generating function for suitable fluxes and can uniquely
be defined as the projection of zs on the space

H+ = 〈1, h, h(2), . . . 〉
spanned by Faà di Bruno iterates h(k) ≡ (∂ + h)k(1). For instance, one has

H(1) = h, H(2) = h(2) − 2h2, H (3) = h(3) − 3h2h − 3h3 − 3h′
2, . . . . (9)

Thus the coefficients Hs
k are defined as differential polynomials of h2, h3, . . .. The linear

relations (9) are invertible and this means that any element of H+ can be written as a suitable
linear combination over H(k).

The representation of the KP hierarchy in the form (7) is equivalent to Sato’s formulation
of that on the level of Lax equation

∂sQ = [(Qs)+,Q],

on the formal pseudodifferential operator Q = ∂ +
∑

k�2 uk∂
−k+1. One has the following:

∂ = Q +
∑
k�2

hkQ−k+1

and

(Qs)+ = Qs +
∑
k�2

Hs
kQ−k+1.

One can write, for example, the following:

h2 = −u2, h3 = −u3, h4 = −u4 − u2
2, . . .

and

H 2
1 = 2h3 + h′

2 = −2u3 − u′
2, H 2

2 = 2h4 + h′
3 + h2

2 = −2u4 − u′
3 − u2

2, . . . .

Relation (8) on the formal Laurent series a(i) = z+
∑

k�1 ak(i)z
−k+1 relates two neighbors

h(i) and h(i + 1) by the Darboux map h(i) → h(i + 1) = h(i) + ax(i)/a(i) and guarantees
compatibility of the latter with KP flows. It is obvious that this equation can be rewritten in
the form of differential-difference conservation laws

∂sξ(i) = H(s)(i + 1) − H(s)(i)

with

ξ = ln a = ln z +
∑
k�1

akz
−k − 1

2

⎛
⎝∑

k�1

akz
−k

⎞
⎠

2

+
1

3

⎛
⎝∑

k�1

akz
−k

⎞
⎠

3

− · · ·

≡ ln z +
∑
k�1

ξkz
−k.
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Thus, we consider the following equations of DKP chain hierarchy:

∂shk(i) = ∂Hs
k−1(i), ∂sξk(i) = Hs

k (i + 1) − Hs
k (i). (10)

3. Integrable lattices

3.1. Invariant submanifolds of the DKP chain

As was mentioned in the introduction one knows from the literature many examples of
differential-difference systems over a finite number of fields which share the property of having
an infinite number of conservation laws and the corresponding one-parametric generalized
symmetry groups defined by respective evolutionary equations. There are different methods
for constructing integrable lattices and its explicit solutions, such as Lax pairs, recursion
operators etc. For details, see, for example, [1–3, 5, 6, 9, 10, 12, 17].

In [14, 15], we have proved that the DKP chain is a convenient and simple notion of
showing relationship of integrable lattices with the KP hierarchy. This relationship is very
useful because of the remarkable Sato theory which gives description of analytic solutions
of the KP hierarchy in terms of an infinite Grassmanian manifold and τ -function [11]. The
following two theorems give a framework for constructing integrable lattices whose hierarchies
directly relate with the KP hierarchy.

Theorem 1 [15]. The submanifold Sn
l−1 defined by the condition

zl−na[n](i) ∈ H+(i), ∀i ∈ Z (11)

is tangent with respect to the DKP chain flows defined by (10).

Theorem 2 [16]. The chain of inclusions of invariant submanifolds

Sn
l−1 ⊂ S2n

2l−1 ⊂ S3n
3l−1 ⊂ · · · ⊂ Skn

kl−1 ⊂ · · ·
is valid.

Here, by definition

a[s](i) =
⎧⎨
⎩

a(i) × · · · × a(i + s − 1), s � 1
1, s = 0
a−1(i − 1) × · · · × a−1(i − |s|), s � −1

are discrete Faà di Bruno iterates of Laurent series a(i). In what follows, we use the simple
obvious identity

a[r1+r2](i) = a[r1](i)a[r2](i + r1) = a[r2](i)a[r1](i + r2), ∀r1, r2 ∈ Z. (12)

Using the coefficients a
[r]
k defined by the relation a[k] = zk +

∑
s�1 a[k]

s zk−s one recovers
from (12)

a
[r1+r2]
k (i) = a

[r1]
k (i) +

k−1∑
j=1

a
[r1]
j (i)a

[r2]
k−j (i + r1) + a

[r2]
k (i + r1)

= a
[r2]
k (i) +

k−1∑
j=1

a
[r2]
j (i)a

[r1]
k−j (i + r2) + a

[r1]
k (i + r2). (13)

We observe that the condition (11) can be written in the form of the following generating
relation:

zl−na[n] = H(l) +
l∑

k=1

a
[n]
k H (l−k).

5
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After a look at the negative powers of z in the latter formula, one gets the explicit form of (11)
as follows:

G
(n,l)
k ≡ a

[n]
k+l − Hl

k −
l−1∑
j=1

a
[n]
j H

l−j

k = 0, ∀k � 1.

3.2. Restriction of the DKP chain on Sn
0

Let us consider the case l = 1 corresponding to the invariant submanifold Sn
0 . It is defined by

conditions

G
(n,1)
k ≡ a

[n]
k+1 − H 1

k = 0, ∀k � 1.

So, on Sn
0 one has H 1

k = hk+1 = a
[n]
k+1. Theorem 2 says that

Sn
0 ⊂ S2n

1 ⊂ S3n
2 ⊂ · · · ⊂ Skn

k−1 ⊂ · · ·
and, hence,

G
(n,1)
k = 0 ⇒ G

(2n,2)
k = 0 ⇒ G

(3n,3)
k = 0 ⇒ · · ·

Solving successively these relations in favor of Hs
k gives

Hs
k = F

(n,s)
k [a1, a2, . . .] ≡ a

[sn]
k+s +

s−1∑
j=1

q
(n,sn)
j a

[(s−j)n]
k+s−j , (14)

where q
(n,r)
k = q

(n,r)
k [a1, a2, . . .] are polynomial discrete functions defined by the relation

zr = a[r] +
∑
k�1

q
(n,r)
k zk(n−1)a[r−kn] (15)

or, more exactly,

a
[r]
k +

k−1∑
j=1

a[r−jn]q
(n,r)
j + q

(n,r)
k = 0, ∀k � 1. (16)

Below the first few q
(n,r)
k are written as

q
(n,r)
1 = −a

[r]
1 , q

(n,r)
2 = −a

[r]
2 + a

[r]
1 a

[r−n]
1 ,

q
(n,r)
3 = −a

[r]
3 + a

[r]
1 a

[r−n]
2 + a

[r−2n]
1 a

[r]
2 − a

[r]
1 a

[r−n]
1 a

[r−2n]
1 .

It can be shown that the functions q
(n,r)
k are related to each other by the relation

q
(n,r1+r2)
1 (i) = q

(n,r1)
k (i) +

k−1∑
j=1

q
(n,r1)
j (i)q

(n,r2)
k−j (i + r1 − jn) + q

(n,r2)
k (i + r1)

= q
(n,r2)
k (i) +

k−1∑
j=1

q
(n,r2)
j (i)q

(n,r1)
k−j (i + r2 − jn) + q

(n,r1)
k (i + r2). (17)

In what follows, there is a need for the more general than (16) relation

a
[r]
k (i) +

k−1∑
j=1

a
[r−jn]
k−j (i)q

(n,r−p)

j (i + p) + q
(n,r−p)

k (i + p) = a
[p]
k (i) (18)

6
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with any integers r and p. The latter can easily be obtained as follows. Taking into account
(12), we obtain

zr−p = a[r−p](i + p) +
∑
k�1

q
(n,r−p)

k (i + p)zk(n−1)a[r−p−kn](i + p)

= a[−p](i + p)

⎛
⎝a[r](i) +

∑
k�1

q
(n,r−p)

k (i + p)zk(n−1)a[r−kn](i)

⎞
⎠

and

zr−pa[p](i) = a[r](i) +
∑
k�1

q
(n,r−p)

k (i + p)zk(n−1)a[r−kn](i).

Then writing explicitly the latter relation we get (18). Solving (18) in favor of q
(n,r−p)

k (i + p)

yields

a
[p]
k (i) +

k−1∑
j=1

q
(n,r−(k−j)n)

j (i)a
[p]
k−j (i) + q

(n,r)
k (i) = q

(n,r−p)

k (i + p). (19)

Observe that relations (14) are coded in

H(s) = zs(1−n)a[sn] +
s∑

j=1

z(s−j)(1−n)q
(n,sn)
j a[(s−j)n].

This means that when restricting to Sn
0 , one has

H+ = 〈1, z1−na[n], z2(1−n)a[2n], . . .〉. (20)

We see that on the Sn
0 DKP chain equations can be written in the form of differential-difference

conservation laws

∂sξk(i) = F
(n,s)
k (i + 1) − F

(n,s)
k (i). (21)

More exactly, equations (21) appear as a result of projection of restricted DKP chain flows on
the space M whose points are defined by an infinite number of functions {ak = ak(i)}. As
was shown in [7], with n = 1, the evolution equations (21) are equivalent to the discrete KP
hierarchy (dKP) [18]. We can show that given any solution of DKP chain hierarchy restricted
to Sn

0 , the noninvertible map gn : a(i) → z1−na[n](ni) gives the solution of the dKP one.
More generally, it is known that gk

(
Skn

l−1

) ⊂ Sn
l−1 [15].

We refer, for simplicity, to equations (21), with some fixed n as dKP hierarchy. Since all
the nth dKP hierarchy flows ‘live’ on the same phase space M it is natural to call (21) (with
any n) the extended dKP hierarchy [13].

It is useful for our aims to write equations

Dts q
(n,r)
k (i) = q

(n,r)
k+s (i + sn) +

s∑
j=1

q
(n,sn)
j (i)q

(n,r)
k+s−j (i + (s − j)n)

− q
(n,r)
k+s (i) −

s∑
j=1

q
(n,sn)
j (i + r − (k + s − j)n)q

(n,r)
k+s−j (i) (22)

which are fulfilled by virtue of (21). These equations can be found by making use of the
suitable differential-difference Lax equation (see, for example, [15]).

7
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3.3. Restriction of the DKP chain on Sn
0 ∩ Sp

l−1

Let us now consider nontrivial intersections Sn
0 ∩ Sp

l−1. The word ‘nontrivial’ means that
ln − p �= 0 is to be supposed. According to theorem 1, the restriction of the DKP chain on
Sn

0 ∩ Sp

l−1 is defined by the generating relation

zl−pa[p] − F (n,l) −
l∑

j=1

a
[p]
j F (n,l−j) =

∑
k�1

J l
kz

−k = 0

with the Laurent series

F (n,s) ≡ zs +
∑
k�1

F
(n,s)
k z−k.

Thus, the restriction of DKP chain flows on Sn
0 ∩ Sp

l−1 is given by the following polynomial
conditions:

J l
k ≡ a

[p]
k+l − F

(n,l)
k −

l−1∑
j=1

a
[p]
j F

(n,l−j)

k = 0, ∀k � 1 (23)

which, in fact, define some submanifold Mn,p,l ⊂ M invariant with respect to flows of the
nth discrete KP hierarchy (21). Making use of relation (19) we get the following,

F
(n,l)
k (i) +

l−1∑
j=1

a
[p]
j (i)F

(n,l−j)

k (i) = a
[ln]
k+l (i) +

l−1∑
j=1

q
(n,ln−p)

j (i + p)a
[(l−j)n]
k+l−j (i),

and, hence,

J l
k = a

[p]
k+l (i) − a

[ln]
k+l (i) −

l−1∑
j=1

q
(n,ln−p)

j (i + p)a
[(l−j)n]
k+l−j (i).

Replacing in (18) k → k + l and setting r = ln we get

J l
k = Ql

k +
k−1∑
j=1

a
[−(k−j)n]
j Ql

k−j , k � 1, (24)

with Ql
k(i) ≡ q

(n,ln−p)

k+l (i + p). Solving these relations in favor of Ql
k yields

Ql
k = J l

k +
k−1∑
j=1

q
(n,−(k−j)n)

j J l
k−j , k � 1. (25)

From (22) we have

Dts Q
l
k(i) = Ql

s+k(i + sn) +
s∑

j=1

q
(n,sn)
j (i + p)Ql

s+k−j (i + (s − j)n)

− Ql
s+k(i) −

s∑
j=1

q
(n,sn)
j (i − (s + k − j)n)Ql

s+k−j (i).

It is worthwhile to notice that the coefficients of this equation do not depend on l. The same
is true for the coefficients of transformation (25).

8
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3.4. Examples of integrable lattices

Let us give some examples of differential-difference equations below which appear as a result
of restriction of the nth dKP hierarchy on Mn,p,l .

(i) One-field lattices. The submanifold Mn,p,1 is defined by an infinite set of conditions
J 1

k = a
[p]
k − a

[n]
k = 0,∀k � 2. Without loss of generality one can suppose that p � 1 and

n < p and n �= 0. From (13) one has

a
[p]
2 (i) = a

[n]
2 (i) + a

[n]
1 (i)a

[p−n]
1 (i + n) + a

[p−n]
2 (i + n)

= a
[n]
2 (i + p − n) + a

[n]
1 (i + p − n)a

[p−n]
1 (i) + a

[p−n]
2 (i)

and

a
[p−n]
2 (i) = −a

[n]
1 (i − n)a

[p−n]
1 (i)

and

a
[n]
2 (i + p − n) − a

[n]
2 (i) = a

[p−n]
1 (i)

(
a

[n]
1 (i − n) − a

[n]
1 (i + p − n)

)
.

From the latter one has the following differential-difference equation1:

∂a
[p−n]
1 (i) = a′

i + · · · + a′
i+p−n−1 = a

[n]
2 (i + p − n) − a

[n]
2 (i)

= a
[p−n]
1 (i)

(
a

[n]
1 (i − n) − a

[n]
1 (i + p − n)

)
. (26)

One needs to consider two cases. Let n � 1 and p � n + 1. Then (26) is specified as

p−n∑
s=1

a′
i+s−1 =

p−n∑
s=1

ai+s−1

(
n∑

s=1

ai−s −
p−1∑

s=p−n

ai+s

)
. (27)

The important case to consider is n � 1 and p = n + 1 which corresponds to the
Bogoyavlenskii lattice (6). Let n � −1 and p � 1. In this case (26) becomes

p+|n|∑
s=1

a′
i+s−1 =

p+|n|∑
s=1

ai+s−1

⎛
⎝ p+|n|∑

s=p+1

ai+s−1 −
|n|∑
s=1

ai+s−1

⎞
⎠ . (28)

It should be noted that two pairs of integers (n, p) and (−p, |n|) correspond to the same
equation of the form (28).

(ii) Toda lattice. When restricting the dKP hierarchy to M1,1,2, one requires

J 2
k = ak+2(i) − a

[2]
k+2(i) − q

(1,1)
1 (i + 1)ak+1(i) = 0.

The latter is solved by

ak+2(i) = −
k∑

j=1

aj (i − 1)ak−j+2(i).

Equations of the first flow of the dKP hierarchy in this case are reduced to a pair of
evolution equations

a′
1(i) = a2(i + 1) − a2(i), a′

2(i) = a2(i)(a1(i − 1) − a2(i))

which are equivalent to the Toda lattice in its exponential form [17].

1 Here and in what follows ai ≡ a1(i).
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(iii) Belov–Chaltikian lattice. Restricting the first flow of the dKP hierarchy to M1,3,2 yields
the two-field system

a′
1(i) = a2(i + 1) − a2(i),

a′
2(i) = a1(i)a2(i − 1) − a1(i − 1)a2(i + 1) + a2(i){a1(i − 2) + a1(i − 1)

− a1(i) − a1(i + 1)} + a1(i − 1)a1(i)(a1(i − 2) − a1(i + 1))

which, in turn, via the invertible ansatz

Li = −a1(i), Wi = a2(i + 1) + a1(i)a1(i + 1)

can be transformed into the Belov–Chaltikian lattice [1]

L′
i = Wi−1 − Wi + Li(Li+1 − Li−1), W ′

i = Wi(Li+2 − Li−1).

(iv) Shabat dressing lattice. Consider M1,0,2 which is defined by conditions

J 2
k = −a

[2]
k+2 − q

(1,2)
1 ak+1 = 0. (29)

One can check that by virtue of (29) with k = 1,

Dxq
(1,2)
2 (i) = Dx

(−a2(i) − a2(i + 1) + a2
i

) = 0.

So, we can write a2(i) + a2(i + 1) = a2
i − µi , where µi do not depend on x and

a′
i + a′

i+1 = a2(i + 2) − a2(i) = a2
i+1 − a2

i − µi+1 + µi.

The latter is nothing but the Shabat dressing lattice [12].

4. Reductions of the nth dKP hierarchy

The main goal of this section is to show some class of restrictions compatible with the nth
dKP hierarchy (21). The corresponding constraints are supposed to be written in the form of
periodicity conditions

I l
k(i + n) = I l

k(i), ∀k � 1 (30)

with a suitable infinite collection of polynomial discrete functions
{
I l
k = I l

k : k � 1
}
. We are

looking for these functions through invertible relations2

Qk = Ik +
k−1∑
j=1

ζk−1,j Ik−j , k � 1 (31)

with some unknown coefficients ζk,j . We have

Dts I1(i) = Dts Q1(i) = Qs+1(i + sn) +
s∑

j=1

q
(n,sn)
j (i + p)Qs−j+1(i + (s − j)n)

− Qs+1(i) −
s∑

k=1

q
(n,sn)
j (i − (s − j + 1)n)Qs−j+1(i). (32)

Substituting (31) into right-hand side of (32) we require that it be identically zero provided
that the conditions (30) are imposed. This leads to the relations

ζs,m(i + sn) +
m−1∑
j=1

q
(n,sn)
j (i + p)ζs−j,m−j (i + (s − j)n) + q(n,sn)

m (i + p)

= ζs,m(i) +
m−1∑
j=1

q
(n,sn)
j (i − (s − j + 1)n)ζs−j,m−j (i) + q(n,sn)

m (i − (s − m + 1)n)

2 We use sometimes simplified notations Ik ≡ I l
k,Qk ≡ Ql

k , etc.

10
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with s � 1 and m = 1, . . . , s. Taking into account (17), one can easily check that the solution
of these equations is given by

ζs,m(i) = q(n,−p−(s−m+1)n)
m (i + p). (33)

Thus, we have the following: if conditions (30) for Ik defined by the relations

Qk(i) = Ik(i) +
k−1∑
j=1

q
(n,−p−(k−j)n)

j (i + p)Ik−j (i), k � 1 (34)

are valid then Dts I1 = 0,∀s � 1. Solving (34) in favor of Ik yields

Ik(i) = Qk(i) +
k−1∑
j=1

a
[−p−(k−j)n)]
j (i + p)Qk−j (i), k � 1. (35)

We can prove, by induction, that under (30) the quantities Ik do not depend on evolution
parameters ts for all k � 1. We have

Dts Ik+1(i) +
k∑

j=1

Dts ζk,j (i)Ik−j+1(i) +
k∑

j=1

ζk,j (i)Dts Ik−j+1(i) = Dts Qk+1(i)

= Qs+k+1(i + sn) +
s∑

j=1

q
(n,sn)
j (i + p)Qs−j+k+1(i + (s − j)n)

−Qs+k+1(i) −
s∑

j=1

q
(n,sn)
j (i − (s − j + k + 1)n)Qs−j+k+1(i).

Let us suppose that we have already proved that Dts Ij for j = 1, . . . , k by virtue of (30) with
Ik are given by (34). Then Dts Ik+1 = 0 under (30) if the relations

ζs+k,m(i + sn) +
m−1∑
j=1

q
(n,sn)
j (i + p)ζs+k−j,m−j (i + (s − j)n) + q(n,sn)

m (i + p)

= ζs+k,m(i) +
m−1∑
j=1

q
(n,sn)
j (i − (s + k − j + 1)n)ζs+k−j,m−j (i)

+ q(n,sn)
m (i − (s + k − m + 1)n)

with m = 1, . . . , s and

ζs+k,s+m(i + sn) +
s∑

j=1

q
(n,sn)
j (i + p)ζs+k−j,s+m−j (i + (s − j)n)

= ζs+k,s+m(i) +
s∑

j=1

q
(n,sn)
j (i + (s + k − j + 1)n))ζs+k−j,s+m−j (i) + Dts ζk,m(i)

with m = 1, . . . , k are valid. Again we can check that these relations are solved by (33). As
an obvious consequence of the above calculations we obtain the following theorem:

Theorem 3. The periodicity conditions (30) with I l
k given by (35) are compatible with the nth

discrete KP hierarchy.

Let us denote the submanifold of M defined by conditions of periodicity (30) as Nn,p,l .
An infinite set of constraints I l

k = 0 defining Mn,p,l gives a particular solution of (30) and,
hence, we have Mn,p,l ⊂ Nn,p,l .

11
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It is useful to establish a relationship between J l
k and I l

k . Making use of (18), (24) and
(34), we get the relation

Jk = Ik +
k−1∑
j=1

a
[p]
j Ik−j

and its inverse

Ik(i) = Jk(i) +
k−1∑
j=1

a
[−p]
j (i + p)Jk−j (i).

5. Reductions of the Bogoyavlenskii lattice

The goal of this section is to show how theorem 3 can be applied for constructing some class
of constraints compatible with the Bogoyavlenskii lattice (6). More exactly, we would like
to show a class of restrictions which correspond to intersection Mn,n+1,1 ∩ Nn,p,1 which is
evidently equivalent to Mn+1,n,1 ∩Nn+1,p,1. The submanifold Mn,n+1,1 is defined by equations
a

[n]
k = a

[n+1]
k with k � 2 which are uniquely solved as ak = P

[n]
k [a] with some discrete

polynomials P
[n]
k . Next we require that the periodicity conditions I 1

k (i + n) = I 1
k (i) and

I 1
k (i + n + 1) = I 1

k (i) must be valid simultaneously. This is equivalent to I 1
k (i + 1) = I 1

k (i). It
is natural to consider three different cases:

(i) Let p � n + 2. Keeping in mind the condition a
[n]
2 = a

[n+1]
2 , one calculates to obtain

I 1
1 (i) = J 1

1 (i) = a
[p]
2 (i) − a

[n]
2 (i)

= ai(ai+n+1 + · · · + ai+p−1)

+ ai+1(ai+n+2 + · · · + ai+p−1) + · · · + ai+p−n−2ai+p−1.

The condition I 1
1 (i + 1) = I 1

1 (i) can be written as

ai+p = ai

Qi+n

Qi

, with Qi ≡
p−n−1∑

j=1

ai+j . (36)

It is natural to suppose that this difference equation has a number of integrals enough for
its integrability [20]. If so, then this collection of integrals is provided by

{
I 1
k

}
but one

must calculate its explicit form I 1
k = I 1

k [a] in each case. Nevertheless, we can write an
explicit form of two integrals for (36):

Ki =
∏p

s=1 ai+s−1∏n
j=1 Qi+j−1

and Pi =
∏n+1

j=1(ai+j−1 + Qi+j−1)∏n
j=1 Qi+j−1

,

which directly follows from the form of this equation. The second integral is derived here
as follows. As a consequence of (36), we can write

ai+p(ai + Qi) = ai(ai+n+1 + Qi+n+1)

and

Qi+n(ai + Qi) = Qi(ai+n+1 + Qi+n+1).

It is obvious that the latter relation can be written as Pi = Pi+1.

12
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(ii) Let p � −1. We calculate to write

I 1
1 (i) = ai−1(ai−|p| + · · · + ai+n−1) + ai−2(ai−|p| + · · · + ai+n−2) + · · · + ai−|p|−nai−|p|.

The corresponding constraint can be written as

ai+|p|+nQi+n = ai+nQi−1, with Qi ≡
|p|+n∑
j=1

ai+j .

Solving this relation in favor of ai+|p|+2n yields

ai+2n+|p| = ai+n

ai+|p|+n

Qi−1 −
2n+|p|−1∑
j=n+1

ai+j . (37)

In this case we are also able to write two integrals for (37) in its explicit form

Ki =
|p|∏
j=1

ai+j−1

n+1∏
j=1

Qi−j and Pi =
∏n

j=1(ai−j + Qi−j )∏n+1
j=1 Qi−j

.

(iii) Let p = 1, . . . , n − 1. Then

I 1
1 (i) = ai−1(ai+p + · · · + ai+n−1) + ai−2(ai+p + · · · + ai+n−2) + · · · + ai+p−nai+p.

We can write the corresponding constraint in the form

ai+n−pQi+n = ai+nQi−1, with Qi ≡
n−p∑
j=1

ai+j

and

ai+2n−p = ai+n

ai+n−p

Qi−1 −
2n−p−1∑
j=n+1

ai+j .

The two integrals K and P are

Ki =
∏p

j=1 ai−j∏n+1
j=1 Qi−j

and Pi =
∏n

j=1(ai−j + Qi−j )∏n+1
j=1 Qi−s

.

One sees that in each of the three cases the corresponding constraints are written in the
form of the ordinary difference equation ai+N = R(ai, . . . , ai+N−1) with N = p,N = 2n+ |p|
and N = 2n − p, respectively.

Finally, let us show a simple example corresponding to p = 4 and n = 1, that is, when the
Volterra lattice (1) is constrained by a condition given by the fourth-order difference equation

ai+4 = ai

ai+2 + ai+3

ai+1 + ai+2

with the three integrals

Ki = aiai+1ai+2ai+3

ai+1 + ai+2
, Pi = (ai + ai+1 + ai+2)(ai+1 + ai+2 + ai+3)

ai+1 + ai+2
,

Ji = ai(ai+2 + ai+3) + ai+1ai+3.

Observe that in this case I 1
1 = J and I 1

2 = −K − JP . Identify now ai = u1, ai+1 = u2,

ai+2 = u3, ai+3 = u4. The attached system of ordinary differential equations looks as follows:

u′
1 = u1

(
u4

u1 + u2

u2 + u3
− u2

)
, u′

2 = u2(u1 − u3), u′
3 = u3(u2 − u4),

13
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u′
4 = u4

(
u3 − u1

u3 + u4

u2 + u3

)
.

This system has three first integrals

K = u1u2u3u4

u2 + u3
, P = (u1 + u2 + u3)(u2 + u3 + u4)

u2 + u3
,

J = u1(u3 + u4) + u2u4.

Shifting i → i + 1 gives a discrete symmetry transformation

ūk = uk+1, k = 1, 2, 3, ū4 = u1
u3 + u4

u2 + u3
. (38)

By direct calculations one can check that integrals K,P and J are invariant under (38).

6. Conclusion

We have presented a scheme for constructing a broad class of constraints compatible with
integrable lattices which can be derived as reductions of the DKP chain. For a particular
case of the Bogoyavlenskii lattice we showed some simple examples in their explicit form.
In principle, the solution of the lattice under consideration constrained by some conditions is
constructed as follows. One solves the attached system of ordinary differential equations with
some initial conditions

(
u0

1, . . . , u
0
N

) ∈ RN to obtain

a(i, x) = u1(x), . . . , a(i + N − 1, x) = uN(x)

for some initial value, i = i0. To find a(i, x) for the remaining values of the discrete variable
i one needs to use the discrete symmetry transformation.

In this connection, it is important to determine the structure of solutions for attached
systems of ordinary differential equations. We suppose that all these systems are integrable
in the Liouville sense with first integrals invariant with respect to the discrete symmetry
transformation generated by shifting i → i + 1.
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